CAPD DynSys Library
5.2.0
|
The class implements vector field of the one-dimensional real Kuramoto-Shivashinsky PDE under the following assumptions 1 .The solutions are represented in the Fourier basis. More...
#include <capd/pdes/OneDimKSSineVectorField.h>
Public Types | |
typedef capd::interval | ScalarType |
typedef capd::pdes::GeometricBound | VectorType |
typedef capd::IMatrix | MatrixType |
typedef capd::IVector::size_type | size_type |
typedef std::vector< VectorType > | VectorArray |
typedef std::vector< VectorArray > | MatrixArray |
typedef std::vector< ScalarType > | ScalarArray |
typedef std::pair< VectorArray *, VectorArray * > | C1Data |
typedef MatrixType::RowVectorType | FiniteVectorType |
Public Member Functions | |
OneDimKSSineVectorField (ScalarType nu, size_type dim, size_type firstDissipativeVariable) | |
constructs vector field of KS-equation. More... | |
VectorType | operator() (ScalarType h, const VectorType &v) |
VectorType | operator() (ScalarType h, const VectorType &v, MatrixType &A) |
MatrixType | derivative (ScalarType h, const VectorType &v) |
this method computes finite-dimensional square block of the derivative of the vector field More... | |
void | derivative (ScalarType h, const VectorType &v, MatrixType &A, ScalarType &Dxy, ScalarType &Dyx, ScalarType &Dyy) |
This method computed bounds on the derivative of vector field. The finite-dimensional block is computed explicitely, Operator norm of three infinite-dimensional blocks is bounded and returned. More... | |
void | computeODECoefficients (VectorArray &a, size_type order) |
computes Taylor coefficients for C^0 part More... | |
void | computeODECoefficients (const VectorArray &a, VectorArray &c, size_type order) |
given coefficients for C^0 part, it computes Taylor coefficient for variational equation (one column) with initial condition 'c' More... | |
void | makeSelfConsistentBound (VectorArray &a) |
This function should refine the tail so that the vector field is pointing inwards the tail. More... | |
void | makeSelfConsistentBound (VectorArray &a, MatrixArray &J1, MatrixArray &J2, size_type numberOfColumns) |
This function should refine the tail so that the vector field for variational equation is pointing inwards the tail. Here we assume two different initial conditions J1=(Id,0) and J2=(0,something) More... | |
size_type | dimension () const |
size_type | firstDissipativeIndex () const |
void | updateTail (VectorType &x, const VectorArray &enc, ScalarType h) const |
Update tail for C^0 part using linear differential inequality. More... | |
void | updateTail (VectorArray &DyxId, VectorArray &Dyx, const MatrixArray &Enc, const MatrixArray &DyxEnc, ScalarType h) const |
Update tail for two C^1 blocks using linear differential inequality. More... | |
MatrixType | blockNorms (const VectorType &a, size_type m) const |
This function should compute a matrix M such that M_ii is logarithmic norm of the diagonal block M_ij is a norm of ij block The infinite dimensional space is split onto m+1 blocks. More... | |
ScalarType | getLambda (size_type k) |
void | computeODECoefficients (VectorArray &a, MatrixArray &J, size_type p, size_type numberOfColumns) |
This function should compute ODE coefficients up to given order at the set a Moreover, block derivative of first group of variables has to be computed. More... | |
virtual size_type | dimension () const=0 |
virtual size_type | firstDissipativeIndex () const=0 |
Public Attributes | |
ScalarType | nu |
size_type | m_dimension |
size_type | m_firstDissipativeVariable |
ScalarArray | lambda |
ScalarArray | nonlinearPart |
std::vector< ScalarArray > | jacNonlinearPart |
std::vector< ScalarArray > | dyxNonlinearPart |
The class implements vector field of the one-dimensional real Kuramoto-Shivashinsky PDE under the following assumptions 1 .The solutions are represented in the Fourier basis.
The implementation provides
typedef std::pair<VectorArray*, VectorArray*> capd::pdes::OneDimKSSineVectorField::C1Data |
|
inherited |
typedef std::vector<VectorArray> capd::pdes::OneDimKSSineVectorField::MatrixArray |
typedef std::vector<ScalarType> capd::pdes::OneDimKSSineVectorField::ScalarArray |
typedef std::vector<VectorType> capd::pdes::OneDimKSSineVectorField::VectorArray |
capd::pdes::OneDimKSSineVectorField::OneDimKSSineVectorField | ( | ScalarType | nu, |
size_type | dim, | ||
size_type | firstDissipativeVariable | ||
) |
constructs vector field of KS-equation.
[in] | nu | - viscosity parameter in the KS-equation |
|
inlinevirtual |
This function should compute a matrix M such that M_ii is logarithmic norm of the diagonal block M_ij is a norm of ij block The infinite dimensional space is split onto m+1 blocks.
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
virtual |
given coefficients for C^0 part, it computes Taylor coefficient for variational equation (one column) with initial condition 'c'
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
inlineinherited |
This function should compute ODE coefficients up to given order at the set a Moreover, block derivative of first group of variables has to be computed.
|
virtual |
computes Taylor coefficients for C^0 part
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
inlinevirtual |
this method computes finite-dimensional square block of the derivative of the vector field
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
inline |
This method computed bounds on the derivative of vector field. The finite-dimensional block is computed explicitely, Operator norm of three infinite-dimensional blocks is bounded and returned.
now we have to estimate three norms
|
inline |
|
pure virtualinherited |
|
inline |
|
pure virtualinherited |
|
inline |
|
inlinevirtual |
This function should refine the tail so that the vector field is pointing inwards the tail.
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
virtual |
This function should refine the tail so that the vector field for variational equation is pointing inwards the tail. Here we assume two different initial conditions J1=(Id,0) and J2=(0,something)
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
inlinevirtual |
|
inlinevirtual |
|
inlinevirtual |
Update tail for two C^1 blocks using linear differential inequality.
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
|
inlinevirtual |
Update tail for C^0 part using linear differential inequality.
Implements capd::pdes::DissipativeVectorField< capd::pdes::GeometricBound >.
std::vector<ScalarArray> capd::pdes::OneDimKSSineVectorField::dyxNonlinearPart |
std::vector<ScalarArray> capd::pdes::OneDimKSSineVectorField::jacNonlinearPart |
ScalarArray capd::pdes::OneDimKSSineVectorField::lambda |
size_type capd::pdes::OneDimKSSineVectorField::m_dimension |
size_type capd::pdes::OneDimKSSineVectorField::m_firstDissipativeVariable |
ScalarArray capd::pdes::OneDimKSSineVectorField::nonlinearPart |
ScalarType capd::pdes::OneDimKSSineVectorField::nu |