CAPD DynSys Library
5.2.0
|
Classes | |
class | Krawczyk |
class | Mapping |
General function for Newton or Krawczyk method f:R^n -> R^n. More... | |
Typedefs | |
typedef NewtonResult | KrawczykResult |
Enumerations | |
enum | NewtonResult { ResultUndefined = -2, TooManyIterations = -1, NoZeroes = 0, ZeroExists = 1 } |
Define results returned by Interval Newton Method. More... | |
Functions | |
template<typename FloatVector , typename MapType > | |
KrawczykResult | KrawczykProof (const FloatVector &x, double size, MapType &F) |
template<typename MapType > | |
KrawczykResult | KrawczykProof (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
template<typename MapType > | |
MapType::VectorType | KrawczykOperator (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
template<typename IntervalVector , typename IntervalMatrix > | |
void | NewtonInfo (int, IntervalVector, IntervalVector, IntervalVector, IntervalMatrix, IntervalVector) |
Default function for writing details on Newton Proof. You can define your own specification to replace this default function. More... | |
template<typename FloatVector , typename MapType > | |
NewtonResult | NewtonProof (FloatVector &x, double size, MapType &F) |
Rigorous existence proof of a zero of a given function F. More... | |
template<typename MapType > | |
NewtonResult | NewtonProof (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
Rigorous existence proof of a zero of a given function F. More... | |
template<typename MapType > | |
MapType::VectorType | NewtonOperator (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
Computes Newton operator. More... | |
template<typename FloatVector , typename MapType > | |
NewtonResult | NewtonProof (const FloatVector &x, double size, MapType &F) |
std::string | resultToText (NewtonResult code) |
Define results returned by Interval Newton Method.
Enumerator | |
---|---|
ResultUndefined | |
TooManyIterations | |
NoZeroes | |
ZeroExists |
MapType::VectorType capd::newton::KrawczykOperator | ( | const typename MapType::VectorType & | x0, |
const typename MapType::VectorType & | X, | ||
MapType & | F | ||
) |
KrawczykResult capd::newton::KrawczykProof | ( | const FloatVector & | x, |
double | size, | ||
MapType & | F | ||
) |
KrawczykResult capd::newton::KrawczykProof | ( | const typename MapType::VectorType & | x0, |
const typename MapType::VectorType & | X, | ||
MapType & | F | ||
) |
|
inline |
Default function for writing details on Newton Proof. You can define your own specification to replace this default function.
MapType::VectorType capd::newton::NewtonOperator | ( | const typename MapType::VectorType & | x0, |
const typename MapType::VectorType & | X, | ||
MapType & | F | ||
) |
Computes Newton operator.
[in] | x | approximated zero of F, we assume that |
[in] | X | set X |
[in] | F | class which can calculate value of the function F (by calling F(x)) and its derivative dF (by calling F[x]) |
NewtonResult capd::newton::NewtonProof | ( | const FloatVector & | x, |
double | size, | ||
MapType & | F | ||
) |
NewtonResult capd::newton::NewtonProof | ( | const typename MapType::VectorType & | x0, |
const typename MapType::VectorType & | X, | ||
MapType & | F | ||
) |
Rigorous existence proof of a zero of a given function F.
We compute rigorously Newton operator and we check assumptions of the Interval Newton Method.
[in] | x | approximated zero of F, we assume that |
[in] | X | set X, in which we search for a zero of F |
[in] | F | class which can calculate value of the function F and its derivative dF |
NewtonResult capd::newton::NewtonProof | ( | FloatVector & | x, |
double | size, | ||
MapType & | F | ||
) |
Rigorous existence proof of a zero of a given function F.
We compute rigorously Newton operator and we check assumptions of the Interval Newton Method.
[in] | x | approximated zero of F, |
[in] | size | radius of set X, ( ) |
[in] | F | class which can calculate value of the function F (by calling F(x)) and its derivative dF (by calling F[x]) |
|
inline |