CAPD DynSys Library
5.2.0
|
Classes | |
class | CubicalMap |
class | ForbiddenSet |
class that defines forbidden set More... | |
struct | GetKey |
class | Graph |
It defines a graph that in each node can store additional data. More... | |
struct | GraphNode |
struct | less |
struct | less< capd::vectalg::Vector< short int, 2 > > |
class | MapGraph |
struct | MapGraphNodeData |
class | Scope |
class that defines set of regions it can be used do define domain, range, allowed sets for graphs More... | |
Functions | |
template<class MapT , class V , class M > | |
V | computeDerivative (MapT &f, V u, M &A, int period) |
Given a map 'f' it computes the derivative of 'period' iteration of 'f' at 'u'. More... | |
template<class M > | |
std::pair< typename M::RowVectorType, typename M::RowVectorType > | computeCoordSystem (const M &A, M &rVec) |
template<class MapT , class V , class M > | |
std::pair< V, V > | computeCoordSystem (MapT &f, V u, int period, M &rVec) |
template<class Map , class V , class Jet > | |
void | oneDimInvariantManifold (Map &f, typename Map::VectorType &x, Jet &jet, int period) |
This is a generic algorithm for computing (nonrigorous) parameterization of one-dimensional invariant manifold at a fixed point x. More... | |
template<typename GraphT > | |
void | noVisualization (const GraphT &g) |
template<class GraphT > | |
void | computePositiveInvariantSet (GraphT &graph, std::list< typename GraphT::VectorType > &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
computes enclosure of the positive invariant set More... | |
template<class GraphT > | |
void | computeInvariantSet (GraphT &graph, std::list< typename GraphT::VectorType > &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
computes enclosure of the positive invariant set More... | |
template<class GraphT > | |
void | computeInvariantSet (GraphT &graph, typename GraphT::VectorType &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
computes enclosure of the positive invariant set More... | |
template<typename MapType , typename SetType > | |
void | insertMapKeysIntoSet (const MapType &map, SetType &set) |
inserts all map keys into set More... | |
template<typename GraphT , typename ConstraintsT > | |
void | propagateGraph (GraphT &graph, ConstraintsT &constraints, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added More... | |
template<typename GraphT , typename ConstraintsT > | |
void | propagateVertexSet (GraphT &graph, ConstraintsT &constraints, typename GraphT::VertexSet &result) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added More... | |
std::pair<typename M::RowVectorType,typename M::RowVectorType> capd::invset::computeCoordSystem | ( | const M & | A, |
M & | rVec | ||
) |
std::pair<V,V> capd::invset::computeCoordSystem | ( | MapT & | f, |
V | u, | ||
int | period, | ||
M & | rVec | ||
) |
V capd::invset::computeDerivative | ( | MapT & | f, |
V | u, | ||
M & | A, | ||
int | period | ||
) |
Given a map 'f' it computes the derivative of 'period' iteration of 'f' at 'u'.
void capd::invset::computeInvariantSet | ( | GraphT & | graph, |
std::list< typename GraphT::VectorType > & | domain, | ||
int | subdiv, | ||
void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
) |
computes enclosure of the positive invariant set
[in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
[in] | domain | list of boxes that covers domain (even if domain is already set in graph, this information is needed to restrict range of a cubical map) |
[in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
|
inline |
computes enclosure of the positive invariant set
[in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
[in] | domain | "reclangular" domain |
[in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
void capd::invset::computePositiveInvariantSet | ( | GraphT & | graph, |
std::list< typename GraphT::VectorType > & | domain, | ||
int | subdiv, | ||
void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
) |
computes enclosure of the positive invariant set
[in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
[in] | domain | list of boxes that covers domain (even if domain is already set in graph, this information is needed to restrict range of a cubical map) |
[in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
void capd::invset::insertMapKeysIntoSet | ( | const MapType & | map, |
SetType & | set | ||
) |
inserts all map keys into set
|
inline |
void capd::invset::oneDimInvariantManifold | ( | Map & | f, |
typename Map::VectorType & | x, | ||
Jet & | jet, | ||
int | period | ||
) |
This is a generic algorithm for computing (nonrigorous) parameterization of one-dimensional invariant manifold at a fixed point x.
void capd::invset::propagateGraph | ( | GraphT & | graph, |
ConstraintsT & | constraints, | ||
void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added
void capd::invset::propagateVertexSet | ( | GraphT & | graph, |
ConstraintsT & | constraints, | ||
typename GraphT::VertexSet & | result | ||
) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added