natural powers x^c for c=2,3,4 are hand optimized and implemented in EvalSqr.h, EvalCubePow.h and EvalQuarticPow.h, respectively.
More...
|
template<class T > |
T * | evalC0SingularNaturalPow (const unsigned coeffNo, const T *x, T *temp1, T *temp2, const unsigned c) |
| Auxiliary function. More...
|
|
template<class T , class R > |
void | evalC0SingularNaturalPow (const T *left, T *r, const int c, R result, const unsigned coeffNo) |
|
template<class T , class R > |
void | evalC0 (const T *left, const T *right, R result, const unsigned coeffNo) |
|
template<class T , class R > |
void | evalC0HomogenousPolynomial (const T *left, const T *right, R result) |
|
template<class T , class R > |
void | evalC1SingularNaturalPow (const T *left, const T *right, R result, const unsigned dim, const unsigned order, const unsigned coeffNo) |
|
template<class T , class R > |
void | eval (const unsigned degree, const T *left, const T *right, R result, DagIndexer< T > *dag, const unsigned coeffNo) |
|
template<class T , class R > |
void | evalHomogenousPolynomial (const unsigned degree, const T *left, const T *right, R result, DagIndexer< T > *dag, const unsigned coeffNo) |
|
natural powers x^c for c=2,3,4 are hand optimized and implemented in EvalSqr.h, EvalCubePow.h and EvalQuarticPow.h, respectively.
This file implements automatic differentiation for c>4, provided x\neq 0. Special case of C^0-C^1 jet propagation is implemented also in the case x=0.